You can now 3D microprint elastomers with Nanoscribe’s IP-PDMS photoresin
Biocompatibility, flexibility, softness and elasticity carry benefits for life sciences, microfluidics and MEMS

Nanoscribe introduced the new IP-PDMS photoresin for 3D microfabrication of elastomer-based applications, microsystems and devices. The biocompatible printing material is soft, highly flexible and elastic. Thus, IP-PDMS is a promising driver for micro 3D printed applications in various fields, such as in life sciences, microfluidics and for microelectromechanical systems (MEMS). These characteristics and the ISO-approved non-cytotoxicity of the photoresin promise advances in high-precision 3D printing for cell culturing and tissue engineering.
The IP-PDMS photoresin is Nanoscribe’s first printing material with elastomeric properties. The softness, flexibility and elasticity of IP-PDMS are particularly beneficial for new microfabrication strategies in life sciences, microfluidics and MEMS. The wide range of pioneering applications include elastic freeform cell scaffolds and tissue engineering applications, 3D-structured surfaces and microfluidic devices. “In our initial tests for 3D printing soft polymeric structures, IP-PDMS turned out to be a promising material. Personally, I am excited to exploit the new resin for microrobotic components and biomimetic scaffolds”, says PhD Ada-Ioana Bunea, Assistant Professor at the Nanolab of the Technical University of Denmark (DTU) in Copenhagen, summarizing her upcoming research projects with IP-PDMS.
Mechanical properties of IP-PDMS
The new IP-PDMS photoresin shows a Young’s modulus of 15.3 MPa and is thus about three orders of magnitude more elastic than the popular IP-S photoresin of Nanoscribe’s IP Resin portfolio. First users of the printing material appreciate its elastic tensile elongation: “IP-PDMS is a remarkably elastic printing material that can be stretched by up to 240%”, says Dr. René Hensel, Deputy Head of Functional Microstructures at the Leibniz INM – Institute for New Materials in Saarbrücken (Germany).
The interplay of these mechanical characteristics paired with its low refractive index, chemical inertness and gas permeability are well-known for standard PDMS. Together with the versatility of Nanoscribe’s 3D Microfabrication technology and solutions, IP-PDMS offers considerable potentials for novel applications and devices in life sciences, microfluidics and micromechanics. “IP-PDMS, as a 3D printable material, is highly interesting for micropatterned functional surfaces. We can skip time-consuming molding steps to transfer designs into elastomers and new designs become feasible”, Dr. René Hensel emphasizes its potentials for new functional surfaces.
ISO-approved biocompatibility
The silicone-based elastomer IP-PDMS features properties which are similar to those of conventional PDMS. The photoresin is the optimum choice for 3D printing soft, flexible and elastic microstructures. Moreover, the non-cytotoxic properties of IP-PDMS have been tested according to ISO standards. Therefore, the new photoresin is also a promising printing material for 3D-printed applications in life sciences and biology.
The new photoresin is particularly advantageous for elastic freeform cell scaffolds or 3D designs mimicking the natural characteristics of soft tissue.