AerospaceDefenseResearch & Education

U.S. Air Force backs development of mobile 3D printed runway mat

Mat is pioneered by professor at Purdue University and ITAMCO

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

A professor of civil engineering at Purdue University is developing a new type of runway mat for temporary flight operations using metal additive manufacturing. The project, which is being conducted in collaboration with Indiana Technology and Manufacturing Companies (ITAMCO), recently received a grant worth $1 million from the U.S. Air Force.

The funding, a SBIR Phase II grant, will enable Purdue professor Pablo Zavattieri and his team to fast track the 3D printed runway mat’s development. He said of the project: “The objective of the research is to develop a robust sheet or roll technology that serves as an alternative to the AM-2 mat for temporary or expeditionary flight operations. AM-2 matting has served the U.S. military well since the Vietnam War, but the materials and technology in the ITAMCO-led research project will offer many benefits over AM-2 matting.”

Air Force Purdue Runway Mat

Conventional AM-2 matting is a mobile runway that consists of metal rectangles (usually steel or aluminum) measuring about 2 x 12 feet. The mat is designed to be placed on weaker ground surfaces to enable military aircraft to land and takeoff. The new 3D printed runway mat conceived by the Purdue team is said to be more lightweight that AM-2 and more durable.

The new matting solution is made up of an upper surface that bonds with a lower surface. The design is notable for its Phase Transforming Cellular Material (PXCM) geometry, which can withstand and mitigate the loading and sheer stresses of military aircraft.

“Products made with PXCM geometry have the ability to change from one stable configuration to another stable or metastable configuration and back again,” Zavattieri explained. “This means the new runway mat could potentially heal itself, resulting in a much longer life span than a runway made with AM-2 matting. Another benefit is that debris on the runway will not hamper the runway’s performance with our technology.”

With the recent $1 million grant from the U.S. Air Force, the Purdue researcher and his partners at ITAMCO will accelerate the runway mat’s development, moving into the prototyping and testing stage. Specifically, the partners will evaluate the 3D printed mat’s ability to restore itself to its original contour and full operational capability within 30 minutes of compaction.

Research 2021
Ceramic AM Market Opportunities and Trends

This market study from 3dpbm Research provides an in-depth analysis and forecast of the ceramic additive ma...

Tess Boissonneault

Tess Boissonneault is a Montreal-based content writer and editor with five years of experience covering the additive manufacturing world. She has a particular interest in amplifying the voices of women working within the industry and is an avid follower of the ever-evolving AM sector. Tess holds a master's degree in Media Studies from the University of Amsterdam.

Related Articles

Back to top button

We use cookies to give you the best online experience. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services

STAY AHEAD

OF THE CURVE

Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*

WELCOME ON BOARD!