Home / 3D Printing Processes / Univerisity of Nottingham Develops Functional Lightweight Automotive Components Using SLM

Univerisity of Nottingham Develops Functional Lightweight Automotive Components Using SLM

Engineers at The University of Nottingham, in collaboration with Hieta Technologies, are developing lightweight automotive components using new additive manufacturing processes to boost vehicle fuel efficiency, while cutting noise and CO2 emissions.

The components will be constructed using selective laser melting (SLM) of aluminum alloy powder. The Functional Lattices for Automotive Components (FLAC) project aims to achieve significant weight reductions in mass (40&-80%) and optimised thermo-mechanical performance in new vehicle components.

The use of advanced lightweight materials in the project will serve to minimise wastage. Only the required material is incorporated into the built component, reducing costs, increasing the ability to manipulate the material to achieve the required performance and efficiency.

Environmental advantages include the inherent recyclability of the aluminium powder waste, reduced transportation and the elimination of special tooling and hazardous cutting fluids to produce the SLM parts.

FLAC

The three-year FLAC project also will demonstrate the viability and cost analysis of the industrialisation of SLM, along with possible manufacturing routes and supply chain models.

FLAC project lead, Professor Chris Tuck, from the Additive Manufacturing and 3D Printing Research Group, said: “FLAC will benefit UK automotive companies, increasing their competitiveness by allowing them to adopt innovative routes for the design and manufacture of lightweight on-vehicle componentry, with shorter lead times and lower costs than are presently available.”

The FLAC project, which has secured £368,286 from Innovate UK, will investigate components such as brake calipers, heat sinks for LED headlights and power train sub-systems.

The short-term market opportunity for these components – which will also deliver a decrease in CO2 emissions by 16.97g/km – lies in the luxury car and motorsport markets.                                

Professor Tuck said: “The automotive sector is one of the UK’s leading export sectors by value, representing around 6.3 per cent of all UK exports. Successful delivery of FLAC’s portfolio will enhance the R&D leadership in the key automotive technologies, and strengthen the UK automotive supply chain, resulting in increased revenues to the UK economy and government.”

University of Nottingham has 43,000 students and is ‘the nearest Britain has to a truly global university, with a “distinct” approach to internationalisation, which rests on those full-scale campuses in China and Malaysia, as well as a large presence in its home city.’ (Times Good University Guide 2016). It is also one of the most popular universities in the UK among graduate employers and winner of both ‘University of the Year for Graduate Employment’, according to the 2017 The Times and The Sunday Times Good University Guide and ‘Outstanding Support for Early Career Researchers’ at the Times Higher Education Awards 2015. It is ranked in the world’s top 75 by the QS World University Rankings 2015/16. More than 97 per cent of research at The University of Nottingham is recognised internationally and it is 8th in the UK by research power according to the Research Excellence Framework 2014. It has been voted the world’s greenest campus for four years running, according to Greenmetrics Ranking of World Universities.

 

3D Printing Business Directory

About 3D Printing Media Network

3D Printing Media Network is the editorial branch of 3D Printing Business Directory. It was set up to provide the latest industry news and opinions to a global audience of professionals.

Check Also

MIT Engineers 3D Print Programmed Cells Into a Living Tattoo / Video

Share Tweet Share Buffer EmailMIT engineers have devised a 3D printing technique that uses a …