3D Printing ProcessesAdditive ManufacturingAdditive Manufacturing AutomationAIMetal Additive Manufacturing

SUNY Buffalo and Moog develop metal additive manufacturing AI system

With today’s equipment, process development and process control are part of using metal additive manufacturing to make critical parts. Even with the application of applied industrial statistical techniques like Design of Experiments (DoE), the experimental workload is significant. A substantial proportion of this time is spent inspecting sample parts under a microscope or using X-ray Computed Tomography. Aerospace and defense manufacturer Moog has been working hard at this by developing a metal additive manufacturing AI system, as reported by Paul Guerrier, Additive Manufacturing Center Manager at Moog on the company’s official blog.

While Moog has been making significant process improvements to reduce this workload, Professor Rai at University at Buffalo, part of the SUNY System, has been mastering the art of image recognition using artificial intelligence. Thanks to funding from the UB New York State Center of Excellence in Materials Informatics (CMI), Moog engineers and Professor Rai were able to apply convolutional neural networks to metal additively manufactured parts.  The result is a highly trained computer algorithm that can recognize high-quality additive manufactured parts and reject the lower quality ones.

AI for metal additive manufacturing

The above diagram describes this algorithm and a sample resultant image from this work. This large image has been reconstructed from 144 sub-images that were individually evaluated and colored by the computer algorithm. Of the 144 images, 136 of the sub-images were classified as “undermelt” and six of the sub-images were classified as “overmelt”.

Both “undermelt” and “overmelt” are non-optimal conditions seldom used for production parts.  The process parameters used to create the image resulted in insufficient energy and “undermelt” was entirely expected.  Moog and UB now have a computerized inspection tool that will allow Moog to run more experiments, inspect the results, and further increase the quality metal additively manufactured parts.

AM Evaluation Algorithm Result

Since Moog and UB now have a computer trained to recognize high-quality AM parts, engineers at Moog are working to apply this technology in other areas.  For example, an autonomous vehicle’s navigation system can be trained to recognize trees from digital photographs and plot a course around them.  This technology is likely to continue to have a significant impact in the field of robotics.


Victor Anusci

Victor was born in Alexandria, Egypt where he attended school and began working as a professional photographer. He moved to Paris, France, in 1998, where he began working with 3D technologies including photogrammetry and later on 3D scanning and 3D mapping. He developed a passion for 3D printing as a mean to give a physical form to his creations.

Related Articles

We use cookies to give you the best online experience. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies allow us to count visits and traffic sources, so we can measure and improve the performance of our site.

We track anonymized user information to improve our website.
  • _ga
  • _gid
  • _gat

We track anonymized user information to improve our website.
  • BizoID
  • UserMatchHistory
  • bcookie
  • lang
  • lidc
  • join_wall
  • RT

Decline all Services
Accept all Services