Siemens Shows Off Collaborative 3D Printing with Robotic Spiders

The next step in collaborative 3D printing could be something called mobile manufacturing. Siemens researchers in Princeton, New Jersey have developed prototype spider-like robots that can work collaboratively to print structures and surfaces, thus potentially accelerating production of large-scale, complex structures such as the fuselages of planes and the hulls of ships.
Large spiders have been spotted in labs at Siemens Corporate Technology’s Princeton campus. They have been caught depositing a thick, sweet-smelling, sticky material that appears to dry on contact to a smooth, shiny finish. Although ever more of the spiders are appearing, no one has sounded an alarm; and for good reason…
Instead of coming in from surrounding wooded areas, the spiders have journeyed from the virtual world, where they were conceived, to the very real world inhabited by people like Livio Dalloro, who heads the Product Design, Modeling and Simulation Research group in the Automation and Control Technology Field at Siemens Corporate Technology (CT). In Dalloro’s team, the spiders are known as SiSpis or Siemens Spiders, and they are recognized as promising representatives of what could someday be a new species of industrial worker.
“SiSpis are part of a larger picture that we define as Siemens Agile Manufacturing Systems (SiAMS) and they represent the core of our autonomous systems research here in Princeton,” says Dalloro, who explains that the spider-like bots are essentially fully autonomous additive manufacturing devices with legs. “We are looking at using multiple autonomous robots for collaborative additive manufacturing of structures, such as car bodies, the hulls of ships and airplane fuselages.”
Collaboration is the Key
To accomplish this, the robots use onboard cameras as well as a laser scanner to interpret their immediate environment. Knowing the range of its 3D-printer arm, each robot autonomously works out which part of an area – regardless of whether the area is flat or curved – it can cover, while other robots use the same technique to cover adjacent areas. By dividing each area into vertical boxes, the robots can work collaboratively to cover even complex geometries in such a way that no box is missed. “No one else has attempted to do this using mobile manufacturing,” says Bank.
Thanks to NX, a Siemens PLM software solution, and a hybrid software developed by Dalloro’s team that combines NX with ROS (Robot Operating System), the spiders quickly began taking shape. “With the exception of the spiders’ mini motors and cables, which were off-the-shelf products, we developed everything ourselves from the mechanics to the software,” says Dalloro. True to the project’s focus on advanced manufacturing, each time a spider component was designed in the virtual world, it was produced using 3D printing.

In addition, the team had to design the robots’ behavior. “To do that,” says Bank, “we had to develop software tools to simulate their behavior across communities of robots.” That meant that the team had to come up with a method to precisely calibrate the spiders’ manufacturing nozzles. Each spider is equipped with an extruder similar to those on traditional 3D printers, but is limited – for now – to using a cornstarch-and-sugarcane printing substance known as poly lactic acid.
Where do the spiders go from here? Clearly, the researchers have achieved their initial goal of developing a system that is characterized by maximum autonomy and minimum programming requirements. As the next step, the team is transferring the accumulated knowledge (mainly software and algorithms) from SpiderBots to the industrial robots to enable collaborative and mobile manufacturing in industrial level. “Once the technology becomes mature,” says Bank, “It could be applied to almost anything.”