Support great content
Help us bring you the AM insights that matter
AM ResearchMaterialsMetalsResearch & Education

RMIT University study shows that adding copper strengthens 3D printed titanium

Could lead to new range of high-performance alloys for medical and aerospace applications

Copper has been hot in 3D printing recently and titanium has been hot from the start of the metal AM industry. Now a study on a new titanium copper alloy, published in Nature Journal by RMIT researchers, combines the two materials in order to reduce the risk of cracking and deformation.

Current titanium alloys used in additive manufacturing often cool and bond together in column-shaped crystals during the 3D printing process, making them prone to cracking or distortion. And unlike aluminum or other commonly used metals, there is no commercial grain refiner for titanium that manufacturers can use to effectively refine the microstructure to avoid these issues.

Professor Mark Easton from RMIT University’s School of Engineering said their titanium–copper alloy printed with “exceptional properties” without any special process control or additional treatment. Successful trials of titanium-copper alloys for 3D printing could kickstart a new range of high-performance alloys for medical device and aerospace applications.

“Of particular note was its fully equiaxed grain structure: this means the crystal grains had grown equally in all directions to form a strong bond, instead of in columns, which can lead to weak points liable to cracking. Alloys with this microstructure can withstand much higher forces and will be much less likely to have defects, such as cracking or distortion, during manufacture,” Easton said.

The collaborative project involved leading researchers in the area of alloy composition and grain microstructure from RMIT University, CSIRO, the University of Queensland and the Ohio State University.

titanium copper alloy
A 3D-printed titanium-copper block made at RMIT’s Advanced Manufacturing Precinct.

CSIRO Senior Principal Research Scientist, Dr Mark Gibson, said their findings also suggest similar metal systems could be treated in the same way to improve their properties. “Titanium-copper alloys are one option, particularly if the use of other additional alloying elements or heat treatments can be employed to improve the properties further,” he said. “But there are also a number of other alloying elements that are likely to have similar effects. These could all have applications in the aerospace and biomedical industries.”

Gibson said the new breed of alloys could increase manufacturers’ production rates and allow for more complex parts to be manufactured.  “In general, it opens up the possibility of developing a new range of titanium-based alloys specifically developed for 3D printing with exceptional properties,” he said.

“It has been a delight, as it has been my good fortune for some time, to work on such an interesting and significant project as this with such a talented band of scientists,” Gibson said.

The work was part of a project funded by the Australian Research Council. The study ‘Additive manufacturing of ultrafine-grained high-strength titanium alloys’ is published in Nature with DOI 10.1038/s41586-019-1783-1

titanium copper alloy
RMIT researchers involved in the multi-partner collaboration: Dr Dong Qiu, Professor Mark Easton and Dr Duyao Zhang.
Tags

Davide Sher

Since 2002, Davide has built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, he spent 12 years in the United States, where he completed his studies at SUNY USB. As a journalist covering the tech and videogame industry for over 10 years, he began covering the AM industry in 2013, first as an international journalist and subsequently as a market analyst for leading US-firm SmarTech Analysis, focusing on the additive manufacturing industry and relative vertical markets. In 2016 he Co-founded London-based 3dpbm. Today the company publishes the leading news and insights websites 3D Printing Media Network and Replicatore, as well as 3D Printing Business Directory, the largest global directory of companies in the additive manufacturing industry.

Related Articles

Back to top button

We use cookies to give you the best online experience. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services
Close
Close

STAY AHEAD

OF THE CURVE

Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*

WELCOME ON BOARD!