EnergyIndustrial Additive ManufacturingNuclearSustainability

ORNL presents 3D printed nuclear reactor core for a faster, more economical path to nuclear energy

Transformational Challenge Reactor Demonstration Program works on rapid adoption of AM

Researchers at the Department of Energy’s Oak Ridge National Laboratory are refining their design of a 3D printed nuclear reactor core, scaling up the additive manufacturing process necessary to build it, and developing methods to confirm the consistency and reliability of its printed components.

The use of 3D printing in the development of nuclear reactor parts has been getting some attention recently. Just last week we reported of a part now being produced by Westinghouse for a commercial nuclear reactor using 3D printing and Siemens – one of the pioneers in this field – has also taken further steps. It may be that fossil fuels are being phased out, or the realization that a fully renewable energy mix is impossible to obtain, or the fact that fourth-gen reactors could be safer and cleaner, but nuclear is definitely hot.

ORNL is a leading US institution for studying advancements in nuclear science. Operating within ORNL, the Nuclear Science and Engineering Directorate (NSED) addresses compelling challenges in nuclear science and technology. NSED works to extend the life of the current US nuclear reactor fleet. It also investigates advanced reactor systems for the future and, including making fusion energy a viable power source, and generally enabling the peaceful use of nuclear technologies through non-proliferation programs.

Supported by DOE’s Office of Nuclear Energy, the Transformational Challenge Reactor (TCR) Demonstration Program’s unprecedented approach to nuclear energy leverages advances from ORNL in manufacturing, materials, nuclear science, nuclear engineering, high-performance computing, data analytics and related fields. The lab aims to turn on the first-of-its-kind reactor by 2023. The program has maintained its aggressive timeline during the COVID-19 pandemic, using remote work to continue design and analysis efforts.

“The nuclear industry is still constrained in thinking about the way we design, build and deploy nuclear energy technology,” ORNL Director Thomas Zacharia said. “DOE launched this program to seek a new approach to rapidly and economically develop transformational energy solutions that deliver reliable, clean energy.”

Reactor development and deployment have traditionally relied on materials, fuels and technology pioneered in the 1950s and ’60s, and high costs and decades-long construction times have limited the United States to building only one new nuclear power plant in the last 20 years. Now we have additive manufacturing and TCR will introduce new, advanced materials and use integrated sensors and controls, providing a highly optimized, efficient system that reduces cost, relying on scientific advances with potential to shape a new path in reactor design, manufacturing, licensing and operation.

The TCR program has completed several foundational experiments including the selection of a core design, and a three-month “sprint” that demonstrated the agility of the additive manufacturing technology to quickly produce a prototype reactor core.

3D printed nuclear reactor
ORNL scientists have selected and optimized a design for printing over a three month period, demonstrating the ability to rapidly produce a prototype reactor core. Credit: Brittany Cramer/Oak Ridge National Laboratory, U.S. Dept. of Energy

Researchers will now focus on refining the selected design and the processes that will ensure an optimal and reliable energy system. Monitoring technologies continually assess the manufacturing process, providing live data streams that enable real-time qualification of the printed material and performance analysis through artificial intelligence. The team also conducts extensive post-build testing to assess component performance and establish links between the behavior of each unique part and its live manufacturing data.

“We have been aggressively developing the capability to make this program a reality over the last several months, and our effort has proven that this technology is ready to demonstrate a 3D printed nuclear reactor core,” said Kurt Terrani, the TCR technical director. “The current situation for nuclear is dire. This is a foundational effort that can open the floodgates to rapid innovation for the nuclear community.”

As part of deploying a 3D printed nuclear reactor, the program will also create a digital platform that will help in handing off the technology to industry for the rapid adoption of additively manufactured nuclear energy technology.  “The entire TCR concept is made possible because of the significant advances in additive manufacturing process technology,” Terrani said. “By using 3D printing, we can use technology and materials that the nuclear community has been unable to capitalize on in the last several decades. This includes sensors for near-autonomous control and a library of data and a new and accelerated approach to qualification that will benefit the entire nuclear community.”

Through the TCR program, ORNL is seeking a solution to a troubling trend. Although nuclear power plants provide nearly 20 percent of U.S. electricity, more than half of U.S. reactors will be retired within 20 years, based on current license expiration dates. “The TCR program will provide a new model for accelerated deployment of advanced nuclear energy systems,” Zacharia said. “If cost and construction times are not addressed in the very near future, the United States will eventually lose its single largest source of emissions-free power.”

ORNL is partnering with Argonne and Idaho national laboratories and engaging with industry to enable rapid adoption for commercial use.  The Transformational Challenge Reactor builds on ORNL’s 77-year history of international leadership in nuclear science and technology development. The lab began as home to the world’s first continuously operating reactor, and its scientists and engineers pioneered technology and expertise in the first decades of the Atomic Age.

Today, the lab operates the High Flux Isotope Reactor, a DOE Office of Science user facility that provides a world-leading source of neutrons for a variety of research and produces isotopes for medicine, industry, and space exploration. TCR will be the 14th reactor built and operated by ORNL.

“Since its inception as the home of the X-10 Graphite Reactor, ORNL has been at the forefront of nuclear science and engineering,” Zacharia said. “Today, our expertise and unparalleled scientific tools create an opportunity to chart a new course in the nuclear field.”

Tags
Support great content
Help us bring you the AM insights that matter

Davide Sher

Since 2002, Davide has built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, he spent 12 years in the United States, where he completed his studies at SUNY USB. As a journalist covering the tech and videogame industry for over 10 years, he began covering the AM industry in 2013, first as an international journalist and subsequently as a market analyst for leading US-firm SmarTech Analysis, focusing on the additive manufacturing industry and relative vertical markets. In 2016 he Co-founded London-based 3dpbm. Today the company publishes the leading news and insights websites 3D Printing Media Network and Replicatore, as well as 3D Printing Business Directory, the largest global directory of companies in the additive manufacturing industry.

Related Articles

Back to top button

We use cookies to give you the best online experience. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services
Close
Close

STAY AHEAD

OF THE CURVE

Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*

WELCOME ON BOARD!