Research 2020
Composites AM Market Opportunities

This 170-page study from 3dpbm Research provides an in-depth analysis of each major sub-segment in composites...

Industry AnalysisMoney & FundingTrends 2021

New polymer 3D printing report forecasts $55 billion yearly business by 2030

Revenues associated with printed parts factored in for the first time

The business potential of the different 3D printing segments is usually estimated by combining the revenues associated with hardware and materials – which are more easily quantified – and sometimes those associated with AM service providers. However, all AM adopters know well that the real value of 3D printing is in the applications: prototypes, tools, final and aftermarket parts. In its new report on all-polymer 3D printing, SmarTech Analysis leveraged its industry-leading database of AM hardware and material sales (and findings from previous reports) to quantify and factor in the revenues (or revenue equivalent) associated with polymer 3D printed parts. This resulted in an $11+ billion global market in 2020, growing to over $55 billion by 2030. This figure is in line with general consensus of all additive manufacturing (including metals, ceramics and composites) growing to represent between 1% and 2% of all manufacturing by 2030.

In its fourth annual market study on the polymer additive manufacturing segment. SmarTech Analysis quantifies the global economic impact of polymer 3D printing including, for the first time, a deep analysis of revenues associated with 3D printed parts. Driven in the long term by massive opportunities in direct AM production of final parts, SmarTech now expects polymer 3D printing to generate $11.7 billion in revenues in 2020, grow to $24 billion in 2024 and as much as $55 billion yearly by the end of this decade.

Latest evolution of polymer AM

The last two years saw the fulfillment of many promises in the industrialization of polymer additive manufacturing, as well as many challenges still left to face for the industry. Technologies continue to move forward in various ways—especially in terms of end-to-end workflow automation and optimization. Some of the most significant progress and accomplishments in polymer additive manufacturing markets have been registered in material science and development/optimization of new materials for current technologies.

Additive manufacturing’s value proposition is clearest within its applications. For this report SmarTech Analysis has developed a new model that takes into consideration multiple variables – including average part weight and cost – and data collected through the research conducted in several recent vertical segment reports focusing on automotive, aerospace and consumer products among others, in order to assess the revenues or revenue-equivalents of 3D printed parts – including prototypes, molds/casts, tools and directly 3D printed final parts.

Polymer AM hardware is categorized into four main hardware families currently processing polymers (powder bed fusion, vat photopolymerization, material extrusion and material jetting). These include a breakdown of leading high-throughput polymer AM technologies such as digital light synthesis from Carbon, multijet fusion from HP as well as various hardware price-categories): these are now listed as separate segments in all hardware forecasts.

Materials subdivided by technology and form factors (powders, photopolymers, filaments and pellets). Parts are calculated as a complex function of material consumption and are subdivided into vertical adoption segments. The report provides a deep analysis into the full range of types of parts produced by AM, including prototypes and medical models, tools and molds/cast patterns, final and after-market parts and components. These are further broken down into specific applications and part-specific forecasts.

Powder for final parts

In this edition, Polymer Powder Bed Fusion is emerging as the reference polymer process. The technology is now proving to be the most capable in terms of industrial appeal due to its high productivity and part production volume potential, as well as the mechanical performance capabilities of parts made via sintering.

SmarTech now firmly identifies indirect and direct part production as the key applications for additive manufacturing, offering a more significant value proposition and a real opportunity to scale business volumes.
The market for AM polymers has evolved significantly during the past two years, with thermoplastic powder bed fusion processes now emerging as the primary processes for material consumption as AM technologies begin to address the needs of large batch production. Powder materials—and primarily nylon 12—thus represent the largest material segment, driven by both laser- and thermal-based polymer PBF processes.

A large powder bed fusion “cake” at Shapeways.

The two most relevant single segments for the long-term future of polymer 3D printing are the Aerospace and Automotive categories. While today these are mostly limited to prototyping and tooling applications, SmarTech does expect that significant production will take place within these segments by 2030.

Consumer products are also expected to become a large segment for direct 3D printing. The transition is going to take a long time to complete however some early application cases—with more than one million parts printed—indicate that it has already begun. In the case of jewelry, a unique consumer segment that is already a somewhat mature adopter of 3D printing technologies, the use of polymer 3D printing is going to remain mainly connected to molds and cast pattern applications (indirect production via 3D printing).

SmarTech expects polymer 3D-printed parts to grow into a $40 billion opportunity by 2030, at the end of the forecast period examined in this report. These numbers may appear unusual for additive manufacturing however, they are relatively small in the $12-to-$20 trillion global manufacturing industry. SmarTech expects that polymer 3D printing will continue to evolve into an advanced, serial manufacturing technology, for production of an increasing number of parts.

Davide Sher

Since 2002, Davide has built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, he spent 12 years in the United States, where he completed his studies at SUNY USB. As a journalist covering the tech and videogame industry for over 10 years, he began covering the AM industry in 2013, first as an international journalist and subsequently as a market analyst, focusing on the additive manufacturing industry and relative vertical markets. In 2016 he co-founded London-based 3dpbm. Today the company publishes the leading news and insights websites 3D Printing Media Network and Replicatore, as well as 3D Printing Business Directory, the largest global directory of companies in the additive manufacturing industry.

Related Articles

Back to top button

We use cookies to give you the best online experience. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services

STAY AHEAD

OF THE CURVE

Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*

WELCOME ON BOARD!