Diode Area Melting (DAM) Technology Developed to Speed Up Metal 3D Printing

UK researchers have developed a new additive manufacturing process known as Diode Area Melting (DAM). This new approach to metal 3D printing which could lead to much faster production rates. Their work supported by funding from an Engineering and Physical Sciences Research Council (EPSRC) allocated impact acceleration grant (IIKE), and conducted primarily at the University of Sheffield, was published in the Science Direct Journal.
Additive Manufacturing (AM) is viewed as a disruptive, viable alternative to conventional manufacturing processes, capable of creating geometrically efficient structures with low material wastage. Laser based Selective Laser Melting (SLM) and electron based Electron Beam Melting (EBM) AM systems are increasingly being used in high value sectors to directly manufacture metallic end-use parts from a variety of alloys. During processing, the melting source (deflected laser/electron beam) selectively scans and melts regions of a pre-deposited powder bed. Cross-sections of the part are fused in layers, built up successively to create the complete 3D object. The method of layered fabrication, combined with the high precision of laser melting allows for a greatly expanded design freedom with minimal feedstock waste.
The DAM process is highly scalable for the melting of larger areas in a single pass. DL bars consume a relatively small space and can be stacked easily to either cover a larger melting area or to superimpose laser beams such that the energy density per laser beam spot is increased. The scientists conclude that the current limitations of AM of metals systems (i.e. high purchase costs, high energy consumption and slow production time) may be overcome through the adoption of a diode laser module melting source. Previously, the use of low power diode bars for melting common SLM materials would be easily dismissed as being unable to provide the required energy density to melt these materials. This work has shown that this energy density challenge can be overcome and presents a first step in developing a novel and efficient high speed metallic additive manufacturing process.