Medical ResearchResearch & Education

Nanoscribe shows off 3D printed microvalve for treating glaucoma

Mexican researchers produced it using the GT Professional 2PP nano 3D printer

Scientists and engineers at the Fundación Markoptic in Culiacán, Mexico and the Universidad Nacional Autónoma de México (UNAM), Mexico City, have fabricated a novel 3D printed microvalve device that could reduce the effects of glaucoma. They used Nanoscribe’s 3D printer to create a complex microvalve that is only 300 µm in diameter.
Glaucoma is the world’s second cause of irreversible blindness after cataracts. The World Health Organization estimates that 4.5 million people worldwide are blind due to glaucoma. In some cases, glaucoma is a condition caused by increased pressure in the eye, damaging the optic nerve. This nerve transfers information from the retina, the light-sensitive layer in the eye, to the brain. Over a long period of time, the damage of the optic nerve would gradually cause the loss of vision.

To tackle this condition, researchers from the Fundación Markoptic developed a microscopic device that could reduce the intraocular pressure and prevent the condition to develop into a more serious disability. For the fabrication of the device, they started a collaboration with the Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT) at the UNAM that have the expertise and facilities for microfabrication.

3D printed microvalve
Scanning electron micrograph displaying a cross-section of a glaucoma microvalve. Image: LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México

The microvalve was conceived by the president of the Fundación Markoptic, Manuel Gallardo Inzunza. He suffered from glaucoma at birth and lost his sight 13 years ago, despite five corneal transplants. The design that he invented is inspired by an internal combustion engine of the airplane. The modified and miniaturized replica was developed to expel the aqueous humor from the eye, freeing the eye pressure. At the same time the microvalve uses a spring to control constant flow and intraocular pressure in a similar manner as the intake valve of a gasoline engine.

The device consists of three components: a valve structure with a liquid outlet, a flexible spring and the valve housing that holds the parts together. The valve is only 300 micrometers in diameter and very difficult to fabricate with traditional techniques at this scale. With the use of a Nanoscribe’s 3D printer, scientists were able to fabricate the microdevice with finest details. All parts were printed separately, matching the size and geometry requirements to assemble them into one functional component and perform as expected, in the correct pressure range.

The advances in the fabrication of this novel microdevice open the way to further investigations of the microvalve functionality and biocompatibility. Researchers work in parallel on the development of artificial cornea models that will simulate the properties of the eye by mimicking the pressure differences to test the microvalve and identify possible difficulties or side effects of the device.

Tags

Davide Sher

Since 2002, I have built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, I spent 12 years in the United States, where I received my Bachelor of Arts undergraduate degree. As a journalist covering the tech industry - especially the videogame industry - for over 10 years, I began covering the AM industry specifically in 2013, as blogger. In 2016 I co-founded London-based 3D Printing Business Media Ltd. (now 3dpbm) which operates in marketing, editorial, and market analysis & consultancy services for the additive manufacturing industry. 3dpbm publishes 3D Printing Business Directory, the largest global directory of companies related to 3DP, and leading news and insights websites 3D Printing Media Network and Replicatore. I am also a Senior Analyst for leading US-based firm SmarTech Analysis focusing on the additive manufacturing industry and relative vertical markets.

Related Articles

We use cookies to give you the best online experience. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services
Close
Close

STAY AHEAD

OF THE CURVE

Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*

WELCOME ON BOARD!