MedicalMicro 3D printing

Medical devices, accelrating R&D with micro AM

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

AntiShock, Haifa, Israel, is an innovative medical device start-up company that develops a disposable, non-invasive, continuous monitoring system that measures patients’ systemic fluid responsiveness (preventing intravenous [IV] fluid overload). Fluid overload is a common condition among intensive care unit (ICU) patients that not only has negative financial and clinical implications, but more importantly can cause organ failure, and, in severe cases, death. To solve this challenge, AntiShock is developing a breakthrough electro-optical sensing medical device based on a tiny electro-optical sensor. This sensing device is built out of several small mechanical moving components that have to be strong and accurate. Therefore, to validate its product and produce a working prototype device, AntiShock had to locate and use advanced and accurate manufacturing technologies.

“The first time I heard the term ‘micro 3D printing’ was a couple of years ago when I saw an image on LinkedIn presenting a tiny 3D printed part on a finger. ‘Incredible’ I thought to myself, ‘such a small part and so accurate with an amazing level of detail. But who needs micro parts and why? What are the possible applications for this type of technology, and what kind of challenges can it potentially solve?’ Last week I had the pleasure of gaining a better understanding of the uses of this technology after visiting a medical device start-up company that was facing an interesting challenge in their R&D process” said Gil Lavi, Founder & CEO 3D Evaluate.

The two leading manufacturing technologies that were chosen were CNC and the stereolithography (SLA) 3D printing process that gave AntiShock the ability to create the first product mock-up. However, when moving to a more advanced stage in their R&D, the company confronted a very challenging task — it needed to produce a small dimension highly detailed component (about 1mm in diameter). SLA 3D printing could not provide the
required levels of details and accuracy, and while CNC could, it was extremely expensive. R&D came to a hold, and a new design solution was required.


While searching for a solution to their problem, Dmitry Khalilov, co-founder and CTO of AntiShock came across Fabrica Group (former Nanofabrica) — the developer and manufacturer of an innovative and disruptive micro 3D printing system. Curious and intrigued, he made contact with Avi Cohen, Fabrica Group’s EVP sales, presenting the challenge and the company’s requirement to produce the small dimension / highly detailed component.

The challenge went beyond printing the component, there was also a need to print a small size thread (with a non-standard pitch) and fit a small screw on top of it, The components had to fit each other perfectly, and the 3D printed component had to be strong enough to sustain mechanical loads. After reviewing the part’s size, geometry, thickness, and estimating the mechanical loads it had to withstand, Fabrica Group accepted the challenge and decided to print the part. After delivering a CAD file, it took only a few days before the Antishock R&D team has the 3D printed part in their hands. Excited and intrigued, they examined the part under a microscope to evaluate the levels of accuracy and to verify that the required details had been produced.

The results were beyond their expectations. The 3D printed part had passed their first qualification step. But would it fit the small metal screw? After carefully assembling the parts it was found to be a perfect fit. After summarizing all the data and comparing the use of micro 3D printing to CNC and SLA, AntiShock came to the following conclusions that made clear what the advantages of using micro 3D printing in their R&D process are detailed accuracy, design freedom, delivery time, and costs.

It took less than a week for AntiShock’s team to solve their problem using Fabrica Group’s micro 3D printing technology which they had never used before. The fact that micro 3D printing was able to produce the required part, opened up a wide choice of possibilities for the company for future R&D of its existing and still to be developed devices. Micro 3D printing was a perfect complementary technology to CNC and SLA 3D printing which were used for producing the bigger parts needed for the device.


Research 2021
Ceramic AM Market Opportunities and Trends

This market study from 3dpbm Research provides an in-depth analysis and forecast of the ceramic additive ma...

Andrea Gambini

Andrea has always loved reading and writing. He started working in an editorial office as a sports journalist in 2008, then the passion for journalism and for the world of communication in general, allowed him to greatly expand his interests, leading to several years of collaborations with several popular online newspapers. Andrea then approached 3D printing, impressed by the great potential of this new technology, which day after the day pushed him to learn more and more about what he considers a real revolution that will soon be felt in many fields of our daily life.

Related Articles

Back to top button

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services



Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*