AerospaceAM for Space

Launcher successfully tests 3D printed turbopump at NASA Stennis

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

Launcher’s first-ever 3D printed turbopump, the first of many to come on the company’s way to orbit, underwent high performance testing for closed cycle at NASA Stennis Space Center E-complex. The initiative was sponsored by U.S. Space Force SBIR.

Stennis Space Center serves as the US’ premier rocket propulsion test facility and provides propulsion test and engineering services for NASA, the Department of Defense, and commercial customers. The Engineering and Test Directorate (ETD) vision is to be the nation’s premier provider of ground-testing services for rocket propulsion systems.

Launcher successfully tests 3D printed turbopump at NASA Stennis

The ETD mission is to support the Human Exploration and Operations Mission Directorate (HEOMD) and the Space Technology Mission Directorate (STMD) through execution of the Center’s major line of business in rocket propulsion testing. Integral to this mission, ETD delivers safe, responsive, and cost-effective propulsion test services to support U.S. leadership in space exploration and the enhancement of national economic competitiveness.

E&TD is the office responsible for overseeing the safe operation of these one of a kind national test facilities and for overseeing the rocket engine propulsion test programs at SSC. The national assets are valued at over $2 billion.

Launcher successfully tests 3D printed turbopump at NASA Stennis

Powered by five Launcher Engine-2s and 20 meters (65 feet) in length, Launcher’s Rocket-1 will deliver satellite payloads of up to 773 kg (1,704 lbs) to low earth orbit. Rocket-1 will have the small satellite launch industry’s highest ratio of payload to rocket mass.

Launcher E-2 engines are 3D printed in high-performance copper alloy and require less propellant to get to orbit — allowing Launcher to deliver more satellite cargo per rocket and as a result, offer a lower price than our competitors. The engines are 3D printed by AMCM on a modified EOS 400 system and they are the largest single-part 3D printed liquid rocket engine combustion chamber. Printing in a single piece reduces costs and enables the highest-performance regenerative cooling design.

E-2 is currently in active development, with more than 100 tests of the sub-scale Engine-1 validating its path to industry-leading performance levels. The first full-scale test fire of the E-2 injector and combustion chamber occurred at Launcher’s NASA Stennis Space Center test stand in October 2020.  The E-2 Turbo-pump testing represents the next step and will be followed by tests of the thrust chamber assembly.

Launcher successfully tests 3D printed turbopump at NASA Stennis



Research 2021
Ceramic AM Market Opportunities and Trends

This market study from 3dpbm Research provides an in-depth analysis and forecast of the ceramic additive ma...

Davide Sher

Since 2002, Davide has built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, he spent 12 years in the United States, where he completed his studies at SUNY USB. As a journalist covering the tech and videogame industry for over 10 years, he began covering the AM industry in 2013, first as an international journalist and subsequently as a market analyst, focusing on the additive manufacturing industry and relative vertical markets. In 2016 he co-founded London-based 3dpbm. Today the company publishes the leading news and insights websites 3D Printing Media Network and Replicatore, as well as 3D Printing Business Directory, the largest global directory of companies in the additive manufacturing industry.

Related Articles

Back to top button

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services



Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*