3D Printing ProcessesAM ResearchHigh Speed 3D PrintingResearch & Education

Intersecting light beams used to 3D print entire layers at a time

QUT researchers have used two different colors of light to control chemical reactions in advanced materials

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

QUT’s Centre for Materials Science interdisciplinary research team have used intersecting light beams to control chemical reactions in advanced materials and 3D print entire layers at a time. The team, from QUT’s School of Chemistry and Physics, consisting of Dr. Sarah Walden, Leona Rodrigues, Dr. Jessica Alves, Associate Professor James Blinco, Dr. Vinh Truong, and ARC Laureate Fellow Professor Christopher Barner-Kowollik, have published their research on ‘Two-color light-activated covalent bond formation’ in Nature Communications.

Intersecting light beams used to 3D print entire layers at a time. QUT researchers have used two different colors of light to control chemical
Two-color activation of a stable cyclobutenedione (UV light) and redshifted ortho-substituted tetrachloride azobenzene (orange light) enables formation of ligated product in polymer crosslinking. Source: Nature.

According to Dr. Walden, light is a particularly desirable tool for activating chemical processes, because of the precision, it offers in starting a reaction. “Most of the work QUT’s Soft Matter Materials Group researchers have done in the past with light has been to use a laser beam to start and stop a chemical reaction along the entire volume where the light strikes the material,” said Dr. Walden. “In this case, we have two different colored light beams, and the reaction only occurs where the two beams intersect…. We use one color of light to activate one molecule, and the second color of light to activate another molecule. And where the two light beams meet, the two activated molecules react to form a solid material…. Normally, in a 3D printer, the inkjet moves around in two dimensions, slowly printing one 2D layer before moving up to print another layer on top…. But using this technology, you could have a whole two-dimensional sheet activated, and print the entire sheet at once.”

Such two-color activated materials are currently very rare, according to Professor Barner-Kowollik. “This project is about proving the viability of the ink for the future generation of printers.”

Professor Barner-Kowollik, who has focused his career on the power and possibilities of light in materials science, was recently recognized with Australia’s highest prize for chemistry, the 2022 David Craig medal, awarded by the Australian Academy of Science.

One of the challenges of the project was to find two molecules that could be activated by two different colors of light and then have them react together, according to Professor Barner-Kowollik. “This is where the innovation comes from…. You want a molecule to be activated with one color of light but not the other color, and vice versa…. That’s not easy to find, it’s actually quite hard to find.”

After much work, Dr. Truong was able to find two molecules that reacted to the intersecting light beams in the required manner and combined to form a very solid material. “In our chemical design, both light-activated processes are reversible…. Hence, we can control exactly when and where the solid material may form,” said Dr. Truong.

Research 2021
Ceramic AM Market Opportunities and Trends

This market study from 3dpbm Research provides an in-depth analysis and forecast of the ceramic additive ma...

Edward Wakefield

Edward is a freelance writer and additive manufacturing enthusiast looking to make AM more accessible and understandable.

Related Articles

Leave a Reply

Your email address will not be published.

Back to top button

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services



Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*