AerospaceEnergy

GE Research gains access to ORNL supercomputer to optimize jet engines

GE Research announced it has been awarded access to the world’s top supercomputer at the Oak Ridge National Laboratory (ORNL) to support the optimization of jet engines and power generation equipment. With access to the advanced computing capability, GE Research says it will be able to focus on reducing fuel consumption for jet engines as well as on finding new ways to integrate 3D printed parts for improved efficiency and performance.

GE Research was selected to use ORNL’s supercomputer by the Department of Energy (DoE) through its Innovation and Novel Computational Impact on Theory and Experiment (INCITE) program. Now in its 15th year, the program grants access to the supercomputer to external parties for advanced engineering and science projects. Through its award, GE Research is receiving 590,000 node-hours to use ORNL’s Summit Supercomputer.

A team from GE Research’s computational fluid dynamics division will use the Summit Supercomputer to study how complex flow characteristics impact gas turbine performance to improve engine design. The goal is to find pathways for developing more efficient jet engines and power generation equipment. Part of its exploration will also be focused on finding new ways to integrate 3D printed components into engine systems.

GE Research ORNL supercomputer
High fidelity simulation showing mixing of hot and cool flows in a high pressure turbine (Photo: GE Research)

“We’re able to conduct experiments at unprecedented levels of speed, depth and specificity that allow us to perceive previously unobservable phenomena in how complex industrial systems operate,” explained Michal Osusky, the project’s leader from GE Research’s Thermosciences group. “Through these studies, we hope to innovate new designs that enable us to propel the state of the art in turbomachinery efficiency and performance.”

This is not the first time that GE has partnered with a National Lab like ORNL. Prior collaborations have led to “significant improvements in combined cycle power plant efficiency, wind energy output and jet engine performance.” Considering this, the company is optimistic its access to ORNL’s Summit Supercomputer will lead to positive results and, crucially, to more sustainable solutions.

GE also leverages in-house supercomputer resources to conduct a number of advanced research initiatives for its Aviation, Power and Renewable Energy businesses. The capability plays an important part in simulating complex fluid dynamics to understand how to design more efficient turbomachinery products.

As part of this project, Osusky and engineers from GE Research and GE Aviation will utilize Large Eddy Simulations (LES) to analyze full 3D engine components to better understand the complex flow physics that influence gas turbine performance. The team will analyze a number of factors, including flow mixing, boundary layer transition, separated flows, multiscale flow structures and coupling between high pressure turbine components.

Notably, GE Additive is also working with ORNL to accelerate the industrialization of additive manufacturing. As part of this ongoing partnership, GE Additive is leveraging the power of the lab’s Summit Supercomputer to rapidly analyze information gathered from metal additive manufacturing systems.

Tags

Tess Boissonneault

Tess Boissonneault moved from her home of Montreal, Canada to the Netherlands in 2014 to pursue a master’s degree in Media Studies at the University of Amsterdam. It was during her time in Amsterdam that she became acquainted with 3D printing technology and began writing for a local additive manufacturing news platform. Now based in France, Tess has over two and a half years experience writing, editing and publishing additive manufacturing content with a particular interest in women working within the industry. She is an avid follower of the ever-evolving AM industry.

Related Articles

Back to top button
Close
Close

STAY AHEAD

OF THE CURVE

Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*

WELCOME ON BOARD!