AM ResearchAutomotiveCase StudiesMetals

FEV and LeiMot partners create lighter diesel engine with AM

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

Reducing vehicle weight reduces CO2 emissions and remains a key concern for auto manufacturers. FEV and its partners in the LeiMot (Lightweight Engine) research project use additive manufacturing to demonstrate further combustion engine emission economies. FEV engineers were able to make engine functions, such as cooling or oil circulation, more efficient. Large assemblies of a passenger car reference diesel engine weight in around 21% lighter.

The German Federal Ministry for Economic Affairs and Energy funds the LeiMot research project. FEV is leading the research consortium, which consists of a renowned automobile manufacturer, research institutes, technical colleges, development service providers, equipment manufacturers and automotive suppliers. LeiMot strengthens conventional production processes by exposing them to the increasing benefits of additive manufacturing.

All-aluminum modern combustion engines have already reached a very respectable weights, thus reducing emissions. Further innovations can only be realized with AM. Hence FEV’s focus on the cylinder head and the crankcase of a modern two-liter diesel engine. The two components were manufactured using laser powder bed fusion. Ralf Bey, head of the LeiMot project, described the materials being used: “the aluminum alloy AlSi10Mg, but fibre-reinforced plastics were also taken into account. The assemblies realized in this way weigh approximately 21 percent less. At the same time, the new, installation-compatible engine components (cylinder head and crankcase) increase drive efficiency.”

Cylinder head loses mass and retains load capacity

The redesigned cylinder head alone saves 2.3 kilograms of weight, or 22%, compared to the original component. High-stress mechanical areas were reinforced to accommodate bending loads from combustion; the overall engine structure bears torsional loads.

“The exhaust duct could be 3D printed directly with thermal insulation thanks to additive manufacturing,” said Bey. “This not only heats up the exhaust after-treatment systems faster. The turbine inlet temperature and thus the efficiency of the turbocharger is also increased.”

Crankcase rethought

The re-designed crankcase further reduced the engine’s overall weight by 5.1 kilograms. The crankcase was re-designed using the so-called short skirt design with an aluminum substructure (bedplate). The friction-reduced main bearing diameters of the basic diesel engine allowed engineers to replace the steel bearing caps with the bedplate.

The crankcase bulkheads were designed to withstand horizontal load structures, which were stiffened at suitable points by a cross-rib composite. Additional reinforcement was provided by two weight-reduced connecting tubes around the balancer shafts. Based on topology analyses, low-load zones were optimized by lattice structures and cavities.

The crankcase side covers were, moreover, made of glass-fibre-reinforced phenolic resin; they weighed about 15 percent less.

Less water brings more cooling

The new cross-flow cooling system further saved weight by lowering the temperatures of the cylinders in a targeted manner and reducing the required amount of water. One of the main differences in design was that individual cooling lines in the cylinder head replaced the large-volume water jacket. This reduced temperatures in the combustion chamber by up to 40 percent. Despite 40 percent less coolant, the wall temperatures were significantly lower than those of the reference engine: the warm-up phase after a cold start can be shortened and the drive power of the water pump can be reduced.

Advanced oil circuit reduces pressure loss

A developed oil circuit created further advantages during cold starts and in normal operating conditions. The optimization measures include a new type of line routing that replaces sharp deflections with bends. Cross-sectional design changes also enhanced oil circulation within the engine. These changes reduced pressure loss in the cylinder head and crankcase by 22 percent. An inverted siphon prevented the oil from draining when the engine was at a standstill. As a result, the appropriate oil pressure for the valve train was available more quickly after engine start-up, and hollow bulkheads were used for oil return.

Research 2021
Ceramic AM Market Opportunities and Trends

This market study from 3dpbm Research provides an in-depth analysis and forecast of the ceramic additive ma...

Adam Strömbergsson

Adam is a legal researcher and writer with a background in law and literature. Born in Montreal, Canada, he has spent the last decade in Ottawa, Canada, where he has worked in legislative affairs, law, and academia. Adam specializes in his pursuits, most recently in additive manufacturing. He is particularly interested in the coming international and national regulation of additive manufacturing. His past projects include a history of his alma mater, the University of Ottawa. He has also specialized in equity law and its relationship to judicial review. Adam’s current interest in additive manufacturing pairs with his knowledge of historical developments in higher education, copyright and intellectual property protections.

Related Articles

Back to top button

We use cookies to give you the best online experience. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services

STAY AHEAD

OF THE CURVE

Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*

WELCOME ON BOARD!