3D Printing ProcessesAM ResearchConstruction 3D PrintingLFAM

ETH Zurich’s DFAB house installs largest ever 3D printed concrete slab

voxeljet largest sand binder jetting 3D printer used for production

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

The DFAB construction project underway at ETH Zurich aims to use all the latest digital technologies to produce a real three-story house. After using the robotic additive deposition to produce walls and advance composite materials for internal complex structures, now the researchers at ETH Zurich have fabricated an 80 m2 lightweight concrete “Smart Slab” lab using large format binder jetting technology. This makes the DFAB house the world’s first full-scale architectural project to use 3D sand printing for its formwork.

The slab combines the structural strength of concrete with the extreme design freedom of powder bed (binder jetting) 3D printing. It is just 20 mm thick at its thinnest point, decoratively ribbed and not even half as heavy as a conventional concrete ceiling. Its design was developed by the research group of Benjamin Dillenburger, Assistant Professor for Digital Building Technologies at ETH Zurich, Smart Slab is one of the core elements of the residential unit DFAB House at Empa’s and Eawag’s research and innovation platform NEST in Dübendorf. The 80 m2, 15-tonne ceiling consists of eleven concrete segments and connects the lower floor with the two-story timber volume above.

The final and largest concrete slab being installed weighs 2.5 tons

Only as much concrete as needed

We’ve covered dozens of construction 3D printing projects: 3D concrete printing is currently experiencing a boom in architecture, and entire houses have already been printed layer by layer. However, for the Smart Slab project, the researchers did not produce the building components themselves with 3D printing but rather the formwork – i.e. the mold. To achieve this, they used a large-scale 3D sand printer from voxeljet, which means the resulting molds consist of a type of artificial sandstone. One of the advantages over the layered concrete printing process is that high-performance fiber-reinforced concrete can be used and deposited with millimeter-precision.

Formwork production is the most labor-intensive step in concrete construction, particularly for non-standardised components. Since concrete is relatively cheap and readily abundant, the temptation is for the construction industry to produce the same solid ceilings over and over again, but the disadvantage is excessive material consumption and implicitly, a large carbon footprint. Digital fabrication methods can make a key contribution here: components can be optimized, enabling the necessary stability with far less material. The geometric complexity of a component does not matter in 3D printing, nor does it cause any additional costs – the printer simply prints what it is told to.

Computational design coordinates parameters

Dillenburger’s research group developed a new software to fabricate the formwork elements, which is able to record and coordinate all parameters relevant to production. In addition to basic data such as room dimensions, the researchers also entered a scan of the curved wall, accurate down to the last millimeter, which acts as the main support for the concrete ceiling. With the software, one could adapt the geometry of the slab so that at each point it was applied only as thick as structurally necessary to support the force flow. “We didn’t draw the slab; we programmed it,” says Mania Aghaei Meibodi, Smart Slab project lead and senior researcher in Dillenburger’s group. “It would not have been possible to coordinate all these aspects with analog planning, particularly with such precision.”

“We didn’t draw the slab; we programmed it” Mania Aghaei Meibodi, Smart Slab project lead and senior researche

If you look at the ceiling from below, you see an organic ornamental structure with different hierarchies. The main ribs carry the loads, while the smaller filigree ribs are mainly used for architectural expression and acoustics. Statics and ornamentation go hand-in-hand. The lighting and sprinkler systems are also integrated into the slab structure. Their size and position were similarly coordinated with the planning software. In this way, the building technology disappears elegantly into the slab to occupy very little space. This saves only a few centimeters in the DFAB House project, but in high-rises, this may mean a few extra floors could be fitted into the same height.

Fabrication at the push of a button

After planning on the computer is completed, the fabrication data can then be exported to the machines at the push of a button. This is where several industry partners came into play for Smart Slab: Christenguss AG produced the high-resolution, 3D printed sand formworks, which were divided into pallet-sized sections for printing and transport reasons, while another fabricated the timber formwork by means of CNC laser cutting. The latter gives shape to the upper part of the Smart Slab and leaves hollow areas that reduce material and weight and at the same time create space for electrical cables.

The voxeljet 3D printer used has a build volume of 8 cubic meters

The two types of formwork for the concreting were then brought together by a third company, which first sprayed the fiber-reinforced concrete onto the sand formwork to produce the finely ribbed surface of the lower concrete shell and then cast the remaining concrete into the timber formwork.

Strong thanks to prestressing

After a two-week hardening process, the 11 individual concrete segments were ready for transport to the NEST. Thanks to the precise planning and prefabrication, the installation time at the construction site was reduced to a minimum: a crane hoisted the concrete elements onto the load-bearing wall, where the prestressing took place. Workers pulled steel cables lengthwise and crosswise through the concrete support and into the channels already inserted in the formwork. Tensioning the cables massively increases the system’s load capacity.

“It was spectacular to see on the construction site how seamlessly our elements fitted with each other and with the existing components of the DFAB House,” says Dillenburger. “We owe this in part to the outstanding interdisciplinary collaboration with our partners. The meticulous work that we had invested in planning completely paid off.”

Research 2022
Polymer AM Market Opportunities and Trends

741 unique polymer AM companies individually surveyed and studied. Core polymer AM market generated $4.6 billion...

Victor Anusci

Victor does not really exist. He is a pseudonym for several writers in the 3D Printing Media Network team. As a pseudonym, Victor has also had a fascinating made-up life story, living as a digital (and virtual) nomad to cover the global AM industry. He has always worked extra-hard whenever he was needed to create unique content. However, lately, as our editorial team has grown, he is mostly taking care of publishing press releases.

Related Articles

Back to top button

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services



Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*