Support great content
Help us bring you the AM insights that matter
Additive ManufacturingAdvanced MaterialsAutomotiveMaterials

EDAG develops crash-proof aluminum alloy for automotive 3D printing

CustoMat_3D research project concluded successfully

Although we have not been able to establish a direct channel with their team, EDAG remains one of the most interesting, innovative and capable firms in the entire automotive additive production scenario. After showing some of the interesting cases and research studies in the automotive segment, the German design studio is now tackling materials with the CustoMat_3D research project.

This new study highlights that, at present, aluminum alloys for AM do not fulfill the high demands required by the automotive industry, such as crash test performance. EDAG also argues that current process design only takes into account highly resistant yet non-ductile material parameters.

As part of the BMBF-backed “CustoMat_3D” research project, the EDAG Group, together with eight partners, developed an aluminum alloy for use in cars, which is able to provide both higher strengths and higher elongations at the break. The latter is very important, especially in the event of a crash.

Over the past 3 years, EDAG looked at the entire process chain from powder manufacturing through simulation to component development. Alloy definition and powder manufacturing were carried out by the Leibniz Institute for Materials Engineering (IWU) and Kymera International. The processing and process development in powder-based laser beam welding (LBM) was carried out at Fraunhofer IAPT, GE Additive and FKM Sintertechnik GmbH. A simulation of the quick cooling of the welded material in the process was explored by Fraunhofer ITWM and MAGMA Giessereitechnologie GmbH. The demonstration of performance was carried out by Mercedes-Benz AG and EDAG Engineering GmbH with the support of Altair Engineering. This integrated approach is intended to make additive production available to mass production processes. The recently discovered alloy can be used to establish car parts that are significantly reduced in weight.

The EDAG Soulmate

In a laboratory phase, various alloys were tested initially. It was possible to try out the most promising alloy successfully on different laser beam welding systems. What is special about the alloy is its versatility: a very wide range of properties can be produced from a single alloy. These properties can be implemented flexibly using a downstream heating treatment. From the material values conveyed, material cards were produced that were used in a structure optimization with the Altair Opti OptiStruct software to reduce the weight of parts of equal power. What is special here is that the requirements of the additive production process and component alignment can be taken into consideration.

Parts from different areas of the car were selected. It was possible to achieve an effective weight-saving both in the dynamic heavy load-bearing wheel carrier and a complex component with high rigidity requirements from the wheel box area. Some of the savings were over 30% of the expected potential. Based on the additive production process, the part can be adapted to the requirements of the vehicle concerned via a load-level model.

In addition, hybrid processes like laser deposition welding and bonding techniques were examined with the recently developed material. In the simulation, it was possible to channel the processes on the microscopic levels of powder via representative elements in the macroscopic simulation of the part. In this way, a significantly shorter computing time is possible. As a result, residual stresses and delays can be made visible and minimized before production.

The newly developed alloy will be available officially in a few months under the brand name CustAlloy®. The project partners are already drawing a very positive conclusion. Due to the wide-ranging application as well as the corrosion-proofing already carried out, bonding technology and the many other requirements of the automotive industry, the alloy is destined for its first use in mass production. We were able to achieve all the project goals and the new alloy, its production process and the tested simulation methods have given experts effective tools to reduce car weight and the ability to use 3D print technology in mass production.

Davide Sher

Since 2002, Davide has built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, he spent 12 years in the United States, where he completed his studies at SUNY USB. As a journalist covering the tech and videogame industry for over 10 years, he began covering the AM industry in 2013, first as an international journalist and subsequently as a market analyst for leading US-firm SmarTech Analysis, focusing on the additive manufacturing industry and relative vertical markets. In 2016 he Co-founded London-based 3dpbm. Today the company publishes the leading news and insights websites 3D Printing Media Network and Replicatore, as well as 3D Printing Business Directory, the largest global directory of companies in the additive manufacturing industry.

Related Articles

Back to top button

We use cookies to give you the best online experience. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services
Close
Close

STAY AHEAD

OF THE CURVE

Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*

WELCOME ON BOARD!