3D Printing ProcessesMetals

Cummins finalizes first metal binder jetting production line

For a serially manufactured lance tip adapter used in high horsepower engines

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

Cummins is finalizing its first production part using high-precision metal 3D printing binder jetting technology. This marks a significant milestone in the company’s additive manufacturing and Industry 4.0 journey.

The part, a Cummins Emission Solutions (CES) lance tip adapter used in high horsepower engines, is now moving through Cummins’ production part approval process (PPAP) for formal approval. The lance tip adapter, a critical emissions component in Cummins engines, atomizes and injects diesel exhaust fluid into the engine exhaust stream to reduce the number of nitrogen oxides (NOx) emitted from Cummins’ engine systems.

“This is incredibly exciting, as it signifies yet another significant milestone in our 3D and additive manufacturing roadmap” said Tim Millwood, Vice President of Global Manufacturing. “We’re on the cusp of being able to leverage a broad range of additive technologies to print the parts we need, using the right technology and at lower costs and increased speeds”. Producing this part through additive manufacturing provides several additional benefits, including a lighter-weight design, improved geometry for fluid and airflow, and the elimination of the added complexity of cross-drillings. The company hopes to have final approval of the part and to start official production later this year.

In April 2019, Cummins invested in binder jet technology from GE Additive. Depending on the complexity of the part, the technology can print 60 to 100 times faster than other laser-based printing processes, allowing high-volume production with this technology. Binder jet technology also has environmental benefits. Unlike traditional machining, the binder jet printer can take nearly 100% of the leftover powder from the printed part, recirculate it through the system and reuse it in the production of other parts. Cummins finalizing first metal, 3D-printed production

In 2020, Cummins established an Additive Manufacturing Lab within the company’s Manufacturing Engineering Development Center (MEDC) in Columbus, Indiana. The purpose of the lab is to develop and validate the industrialized binder jet additive manufacturing process. Cummins’ Engineering teams are taking this opportunity to gain experience and skillset in designing for additive manufacturing as the technology advances. Currently, the Cummins Additive Manufacturing and Engineering teams are working on designing and printing several additional concept parts, with the hopes of finalizing more parts yet this year. Cummins currently has two second-generation binder jet printers, one at its Additive Manufacturing Lab in Columbus, Indiana, and one at GE Additive’s Disruptive Innovation Lab near Cincinnati, Ohio.

Cummins and GE Additive are actively partnering to develop third-generation binder jet technology, which will support an industrialized solution with even higher throughput, improved quality, and lower cost. “The focus of our partnership is to production applications at cost, quality, and needed scale. We are proud to work with Cummins to develop additive technology and provide a meaningful return on investment throughout its supply chains,” said Jacob Brunsberg, Binder Jet product line leader, GE Additive.

Cummins Engineering and Manufacturing teams have printed using polymer (plastic and resin) for years and are continuing to make great progress in low-volume metal printing. These technologies include three GE Additive Concept Laser M2 DMLM machines – one is installed at the Cummins Technical Center in Columbus, Indiana, and the other two are installed at the large Cummins Research and Development Center in San Luis Potosi (SLP), Mexico. Cummins also leverages sand printing technologies at its center in SLP to make molds for components.

The cost and cycle times of these machines make them well-suited for producing parts for Cummins’ aftermarket customers and those needed in low volumes. Since selling the first metal 3D-printed part in 2019, Cummins has approved 20 part numbers and shipped nearly 350 parts using their suite of additive technologies.

Research 2021
Ceramic AM Market Opportunities and Trends

This market study from 3dpbm Research provides an in-depth analysis and forecast of the ceramic additive ma...

Andrea Gambini

Andrea has always loved reading and writing. He started working in an editorial office as a sports journalist in 2008, then the passion for journalism and for the world of communication in general, allowed him to greatly expand his interests, leading to several years of collaborations with several popular online newspapers. Andrea then approached 3D printing, impressed by the great potential of this new technology, which day after the day pushed him to learn more and more about what he considers a real revolution that will soon be felt in many fields of our daily life.

Related Articles

Back to top button

We use cookies to give you the best online experience. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services

STAY AHEAD

OF THE CURVE

Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*

WELCOME ON BOARD!