AM Software

AM Software is the “fourth power” within the end-to-end AM production cycle, together with hardware, materials and applications. The impact of software on the future of digital production is obvious but perhaps it is not yet fully understood where it is that software can affect and contribute to improve and optimize the future of manufacturing.


All digital production inevitably begins with a CAD (Computer Aided Design) model. Therefore CAD (or 3D modeling) software was the first element to emerge the new industrial revolution. As further proof of this, CAD software companies have been taking off in terms of financial performance since AM began to emerge as a production method. Autodesk, Dassault Systèmes, Siemens, Altair and Ansys, to name a few of the largest companies in this segment, have been booming. At the same time, all these companies have made some very significant investments in AM and DfAM.


DfAM is the second highly relevant way that software impacts digital production. The acronym stands for “Design for Additive Manufacturing” and indicates all those new approaches to product and part creation that are made possible by the virtually endless geometric possibilities opened up by additive manufacturing. These tools, also known by the acronym CAE (Computer Aided Engineering), include parametric first and later generative software tools that are enabling engineers to create an entirely new generation of bio-inspired products, that are lighter, more complex and way more efficient.


Simulation software is necessary to make sure that these new – never seen before – products do perform as they are intended to, while AM software is also necessary to make sure that the AM hardware transforms into real physical products that which was imagined and then translated into a digital product or – as they are increasingly described now – a product’s digital twin. AM-specific CAM (Computer Aided Manufacturing) software is necessary to give a growing number of different systems and technologies the proper instructions to produce a part layer by layer and even voxel by voxel. Then process monitoring software – and a growing demand of artificial intelligence power – is necessary to ensure that this happens without errors.


Once an AM part emerges from an AM machine it needs to move on to the next stations of the end-to-end digital production cycle. These include non-disruptive analysis via 3D and CAT scanning (and software is necessary here as well), part finishing (which requires adequate software and accurately studied design methods) and part handling. All these phases – and all the previous phases need to be controlled and coordinated by AM-specific MES (Manufacturing Execution Systems) software. In fact, the entire lifecycle of the product, from the initial quotation to its final use, can now be digitalized and controlled via PLM  (Product Lifecycle Management) software.


This is the area where the giants of software are squaring off to define the way we will make anything and everything.

We use cookies to give you the best online experience. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services
Close
Close