3D Printing ProcessesCase StudiesMass Production

Carbon’s CLIP Technology to Optimize Fluid Manifold Designs for MEMS Mass Production

An unspecified Microelectromechanical Systems (MEMS) manufacturing company is using Carbon’s CLIP technology and Cyanate Ester resin family for mass production of fluid manifolds. The manufacturer of high speed photopolymerization systems just revealed some additional details on this story.

Printers, cooling systems, hydraulic systems – all of these applications use fluid manifolds to deliver liquids from one point to another. Engineers designing these parts have historically been confined to production via injection molding which allows for mass produced parts but restricts a designer’s ability to create smooth contours that facilitate fluid flow.

“With design freedom and a new way of designing, the CLIP process allows the development of other products, by controlling build flow, we can control other components in the system, ultimately developing better, more efficient products.”

While additive manufacturing offered the dream of design freedom, it lacked viability in mass production due to material compatibility and speed of manufacturing. Engineers at the manifold company began with the part’s material: the manifolds need specific chemical resistance, lifetime material stability, and isotropic properties. Without these attributes, design and scalability of an additive process would not matter. Carbon’s Cyanate Ester was the first additive material and process to surpass these requirements with a heat deflection temperature of 230°C, long-term thermal stability, and the necessary chemical resistance.

Passing this initial material hurdle, engineers were free to optimize their design by combining parts and reducing the number of part interfaces. Their new manifold decreases points of possible fluid contamination and improves fluid flow, reliability, and performance of the manifold.

While additive used to be synonymous with unscalable for the manifold company, they see “CLIP [as] good on the scalability to volume”. The final piece showcases complex geometries visually, and initial testing has proved out all of the hopes above. Currently the group is investigating a final manifold design for eventual direct production of hundreds of thousands of parts.

3D Printing Media Network

3D Printing Media Network is the editorial branch of 3D Printing Business Directory. It was set up to provide the latest industry news and opinions to a global audience of professionals.

We use cookies to give you the best online experience. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services
Close
Close

STAY AHEAD

OF THE CURVE

Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*

WELCOME ON BOARD!