AerospaceAM ResearchDefense

U.S. Air Force qualifying multi-laser AM with support from Senvol ML

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

A U.S. Air Force program led by the Air Force Research Laboratory (AFRL) and Air Force Life Cycle Management Center (AFLCMC) is leveraging Senvol’s data-driven machine learning software for additive manufacturing to develop a methodology for demonstrating the viability of multi-laser AM systems for flight applications. Specifically, the Senvol ML software platform is being used to analyze an EOS M400-4 quad-laser powder bed fusion machine.

The joint program, which is primarily contracted to the University of Dayton Research Institute (UDRI), is called FlexSpecs, and it seeks to qualify the EOS M400-4 system by establishing baseline mechanical properties and design allowables. The ultimate aim is to validate the metal AM technology for the production of demonstration builds for heat exchangers and hypersonics-relevant components.

Senvol ML Air Force project
EOS’ M400-4 multi-laser system

“AM has recently demonstrated the ability to rapidly deliver complex geometries and production quality parts that are able to enhance the capabilities of DoD weapons systems,” said Jessica Orr, Program Manager and Materials Engineering Team Leader for AM & Repair Technologies at UDRI. “A major challenge facing the use of AM for producing DoD relevant end-use parts is that the number of available large scale printers is likely to be limited for the next 5-10 years. In this collaborative program we are developing and demonstrating methodology to use a new multi-laser AM printer to produce airworthy, end-use parts.”

In this investigation, the Senvol ML software is helping the researchers to develop a process optimization and characterization strategy for analyzing all the project data. The machine-learning software was selected for this project because of its specific capacity to analyze the relationships between AM process parameters and material performance.

“We’re thrilled to work with UDRI, AFRL and AFLCMC on this program,” added Senvol President Annie Wang. “Our machine learning software, Senvol ML, is well-suited to assist with AM qualification, and this is a great example of that. In addition to helping to develop baseline mechanical properties and design allowables, the software will analyze data to evaluate laser-to-laser consistency, optimize bulk scan settings, identify preferred overlap patterns and parameters, and confirm uniformity over the entire build plate.”

Dr. Mark Benedict, Materials Scientist and Program Manager in the Propulsion, Structures & Industrial Technologies Branch, Manufacturing Technology Division, Materials and Manufacturing Directorate, AFRL, concluded: “The overall objective of this program is to successfully demonstrate full scale M400, multi-laser prints of heat exchangers as well as hypersonics-relevant parts. This is an area of need for the Air Force, and we look forward to the results.”

New York-based Senvol has a number of collaborations already in place. In 2018, for instance, the software company entered into a partnership with the U.S. Navy’s Office of Naval Research to develop data-driven machine learning AM software. More recently, French software solutions company Bassetti Group announced it was offering the Senvol Database of industrial AM machines and materials to its client base.

Research 2022
Polymer AM Market Opportunities and Trends

741 unique polymer AM companies individually surveyed and studied. Core polymer AM market generated $4.6 billion...

Tess Boissonneault

Tess Boissonneault is a Montreal-based content writer and editor with five years of experience covering the additive manufacturing world. She has a particular interest in amplifying the voices of women working within the industry and is an avid follower of the ever-evolving AM sector. Tess holds a master's degree in Media Studies from the University of Amsterdam.

Related Articles

Back to top button

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services



Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*