Medical ResearchResearch & Education

A new way to 3D print custom medical devices

The research is from the University of Nottingham

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

Using a new 3D printing process, University of Nottingham researchers have discovered how to tailor-make artificial body parts and other medical devices with built-in functionality that offers better shape and durability, while cutting the risk of bacterial infection at the same time.

Study lead, Dr. Yinfeng He, from the Centre for Additive Manufacturing, said: “Most mass-produced medical devices fail to completely meet the unique and complex needs of their users. Similarly, single-material 3D printing methods have design limitations that cannot produce a bespoke device with multiple biological or mechanical functions. But for the first time, using a computer-aided, multi-material 3D-print technique, we demonstrate it is possible to combine complex functions within one customized healthcare device to enhance patient wellbeing”.

The hope is that the innovative design process can be applied to 3D-print any medical device that needs customizable shapes and functions. For example, the method could be adapted to create a highly-bespoke one-piece prosthetic limb or joint to replace a lost finger or leg that can fit the patient perfectly to improve their comfort and the prosthetic’s durability; or to print customized pills containing multiple drugs – known as polypills – optimized to release into the body in a pre-designed therapeutic sequence.

Meanwhile, the aging population is increasing in the world, leading to a higher demand for medical devices in the future. Using this technique could improve the health and wellbeing of older people and ease the financial burden on the government.A new way to 3D print custom medical devices to boost performance

For this study, the researchers applied a computer algorithm to design and manufacture – pixel by pixel – 3D printed objects made up of two polymer materials of differing stiffness that also prevent the build-up of bacterial biofilm. By optimizing the stiffness in this way, they successfully achieved custom-shaped and -sized parts that offer the required flexibility and strength.

Current artificial finger joint replacements, for example, use both silicone and metal parts that offer the wearer a standardized level of dexterity, while still being rigid enough to implant into the bone. However, as a demonstrator for the study, the team was able to 3D print a finger joint offering these dual requirements in one device, while also being able to customize its size and strength to meet individual patient requirements.

The team was able to perform their new style of 3D printing with multi-materials that are intrinsically bacteria-resistant and bio-functional, allowing them to be implanted and combat infection (which can occur during and after surgery) without the use of added antibiotic drugs. The team also used a new high-resolution characterization technique to 3D map the chemistry of the print structures and to test the bonding between them throughout the part. This identified that – at very small scales – the two materials were intermingling at their interfaces; a sign of good bonding which means a better device is less likely to break.

The study was carried out by the Centre for Additive Manufacturing (CfAM) and funded by the Engineering and Physical Sciences Research Council. The complete findings are published in Advanced Science, in a paper entitled: ‘Exploiting generative design for 3D printing of bacterial biofilm resistant composite devices’.

Prior to commercializing the technique, the researchers plan to broaden its potential uses by testing it on more advanced materials with extra functionalities such as controlling immune responses and promoting stem cell attachment.

 

Research 2021
Metal AM Market Opportunities and Trends

This market study from 3dpbm Research provides an in-depth analysis and forecast of the three core segments...

Andrea Gambini

Andrea has always loved reading and writing. He started working in an editorial office as a sports journalist in 2008, then the passion for journalism and for the world of communication in general, allowed him to greatly expand his interests, leading to several years of collaborations with several popular online newspapers. Andrea then approached 3D printing, impressed by the great potential of this new technology, which day after the day pushed him to learn more and more about what he considers a real revolution that will soon be felt in many fields of our daily life.

Related Articles

Leave a Reply

Your email address will not be published.

Back to top button

We use cookies to give you the best online experience. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services

STAY AHEAD

OF THE CURVE

Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*

WELCOME ON BOARD!