Additive ManufacturingAM Press ReleasesPost-Processing

A look at surface treatment methods for metal 3D printing

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

One unsolved challenge in additive manufacturing is surface treatment and finish. In theory, additive manufacturing allows complete freedom to create complex shapes, but in practice, surface finish usually requires design constraints. Although improving the quality of the metal powder, optimizing the building direction and process parameters can improve the surface quality of additive manufacturing parts to a certain extent, the surface roughness problem of additive manufacturing parts cannot be completely solved. Therefore, it is necessary to carry out the post-processing of additive manufacturing parts. At present, the main post-processing methods include finishing and mechanical processing. Below we take a closer look at Adaptive Grinding (SAG), laser polishing, chemical polishing and Abrasive Flow Machining (AFM).

Surface treatment: effect after post-treatment

Finishing methods mainly include hand polishing, sandblasting or numerical control grinding. Manual polishing quality depends largely on the operator’s experience, which has poor repeatability and consistency, high labor and time costs, and the dust produced in the polishing process is harmful to human health. In addition, sandblasting and CNC grinding have poor processing accessibility for parts with complex inner surfaces and porous structures, so they are generally used for cleaning and polishing the outer surfaces of parts and removing the oxide layer.

Surface treatment for metal AM, a look at Adaptive Grinding (SAG), laser polishing, chemical polishing and Abrasive Flow Machining (AFM)
Electropolished Medical Implants

For complex structural parts with high surface quality requirements (0.8μm<Ra< 1.6μm), the finishing process is faced with great challenges. In addition to the above methods, there are shape adaptive grinding, laser polishing, chemical polishing and abrasive flow machining.

Shape Adaptive Grinding

Shape Adaptive Grinding (SAG) is a novel process for freeform machining difficult materials such as ceramics and hard metals. Despite low stiffness equipment from the machining equipment, due to the semi-elasticity of the tools, ductile mode grinding can be achieved with a high surface finish. A foreign researcher used the shape adaptive grinding method with a spherical flexible grinding head to polish the free-form surface of titanium AM parts. The defect layer on the additive manufacturing surface was removed by rough polishing and fine polishing, and the final surface roughness Ra reached less than 10nm.

Laser polishing

Laser polishing is a new polishing method that uses a high-energy laser beam to melt the surface material of parts again to reduce the surface roughness. At present, the surface roughness of laser polished parts Ra is around 2~3μm. Due to the high cost of laser polishing equipment, it has not been widely used in the practical 3D printing post-treatment processes.

Chemical polishing

The direct result of chemical polishing is micro-roughness smoothing and polish formation along with the parallel dissolution of an upper layer. It has a remarkable effect on removing the spheroidal layer that is loose and easy to fall off on the surface of hollow structures or parts with hollow structures in small additive manufacturing. Through chemical polishing and electrochemical polishing, the surface roughness of the above porous implant was reduced from 6~12μm to 0.2~1μm.

Surface treatment for metal AM, a look at Adaptive Grinding (SAG), laser polishing, chemical polishing and Abrasive Flow Machining (AFM)
Abrasive Flow Polishing effect of complex structural parts.

Abrasive Flow Machining

Abrasive flow machining (AFM), is an interior surface finishing process characterized by flowing an abrasive-laden fluid through a workpiece. This fluid is typically very viscous, having the consistency of putty, or dough. AFM smooths and finishes rough surfaces, and is specifically used to remove burrs, polish surfaces, form radii, and even remove material. The nature of AFM makes it ideal for interior surfaces, slots, holes, cavities, and other areas that may be difficult to reach with other polishing or grinding processes.

Powder bed fusion technology can achieve the best surface quality among all metal additive manufacturing processes. In addition to the above finishing methods, critical parts sometimes need to be machined. These two kinds of post-treatment means are widely used in the 3d printing mold application. Welcome to contact us to explore more post-treatment methods for metal 3d printing.

Research 2022
Polymer AM Market Opportunities and Trends

741 unique polymer AM companies individually surveyed and studied. Core polymer AM market generated $4.6 billion...

3D Printing Media Network

3D Printing Media Network is the online trade media portal published by 3dpbm, a leading marketing and market research firm specializing in the AM industry. 3dpbm also publishes the 3D Printing Business Directory, the AM Focus eBook series and the 3dpbm Research AM Market Reports. 3D Printing Media Network was founded with the goal to provide the latest industry news, insights and opinions to a global audience of professionals and decision makers.

Related Articles

Back to top button

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services

STAY AHEAD

OF THE CURVE

Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*

WELCOME ON BOARD!