AM ResearchIndustrial Additive ManufacturingMicro 3D printing

3D printed heat exchanger is estimated to be 50% more effective

Created using a repeating gyroid architecture design

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

A new type of lightweight, 3D printed heat exchanger with a maze-like, repeating gyroid architecture design is more compact and efficient than its conventional counterparts, its developers say. A team led by engineers from the University of Glasgow has developed the system, which exploits the unique properties of microscale surfaces to create a high-performance heat exchanger.

Heat exchangers, devices that transfer heat between fluids without mixing them, have a wide range of practical applications. Heat exchangers which transfer thermal energy between fluids are used in systems including refrigeration, fuel cells, and the types of internal combustion engines used in cars and aircrafts.

In a new paper published in Applied Thermal Engineering, the researchers describe how they developed and built the prototype system, which they estimate to be 50% more effective than a market-leading conventional heat exchanger despite being one-tenth of its size.

The system owes its effectiveness to the design of architected surfaces over which liquids flow through the exchanger. The cube-shaped exchanger draws water through a core, studded with tiny holes arranged in a gyroid configuration.

3D printed heat exchanger is estimated to be 50% more effective. Created using a repeating gyroid architecture design.
Design and fabrication of gyroid lattice compact heat exchanger (a) CAD surface model of the gyroid unit cell of 4.6mm x 4.6mm x 4.6mm (b) CAD model of gyroid lattice exchanger core comprising 7 x 7 x 7 array of gyroid unit cells with a wall thickness of 300um and 80% porosity (c) CAD sectional view of the heat exchanger clearly depicting the gyroid core, covering plates and headers assembly (d) 3D printed heat exchanger (e) X-ray micro-computed tomographic image of a plane passing through the mid-height of the heat exchanger and (f) 3D printed heat exchanger without cover plate (g) small scale imperfections.

Gyroids are part of a group of cellular designs that are constructed using triply periodic minimal surface geometries, having non-self-intersecting and highly symmetrical periodic surfaces.

The team chose to use a repeating gyroid architecture for their heat exchanger because the effectiveness of heat exchange is linked to its surface area – the larger the surface area, the more opportunity the fluids have to pass their thermal energy from one to the other. This means that objects with large surface areas can cool or heat fluids faster than those with more limited surface areas.

The team’s microscale gyroid design, which they manufactured from a simple photopolymer using a sophisticated 3D printer, engineers a large surface area into a compact cube measuring 32.2mm on each side and weighing just eight grams.

By drawing water through this dense maze, the researchers were able to demonstrate temperature changes of between 10 and 20ºC when water flowed through their heat exchanger at a rate of between 100 and 270 millimeters per minute.

The team measured the heat transfer coefficient of their new exchanger – the measure of its effectiveness in transferring heat between the fluid and its surfaces – so they could determine how it performed against a series of differently-sized conventional heat exchangers made from materials including polymers and metals.

They found that the effectiveness of their new heat exchanger was 50% more than a thermodynamically-equivalent, most-efficient, counter-flow heat exchanger even though their newly-developed prototype was only 10% of its size.

3D printed heat exchanger is estimated to be 50% more effective. Created using a repeating gyroid architecture design.
Simulated thermal iso-surface for (a) hot fluid (b) cold fluid (c) separating wall and (d) pressure contours corresponding to experimental test number 1

The research was led by Dr. Shanmugam Kumar from the University of Glasgow’s James Watt School of Engineering, alongside colleagues from Swansea University and Khalifa University of Science and Technology in Abu Dhabi.

Dr. Kumar said: “We’ve been working to find new applications for this type of micro-architected, 3D printed lattices for several years now. We have already demonstrated how they can be used for purposes including recyclable high-performance batteries and the development of future ‘smart’ medical devices like prosthetics and back braces.”

“This latest paper shows that we can use these gyroid lattice architectures to create a material with a remarkably large surface area to volume ratio which lends itself very well to heat exchange.”

“Being able to develop smaller, lighter, more efficient heat exchangers could help us develop refrigeration systems which require less power, for example, or high-performance engines which can be cooled more effectively. We’re keen to develop this technology further with future research.”

The team’s paper, titled ‘High performance, micro-architected, compact heat exchanger enabled by 3D printing’, is published in Applied Thermal Engineering. The research was supported by funding from the Abu Dhabi National Oil Company.

Research 2022
Polymer AM Market Opportunities and Trends

741 unique polymer AM companies individually surveyed and studied. Core polymer AM market generated $4.6 billion...

Edward Wakefield

Edward is a freelance writer and additive manufacturing enthusiast looking to make AM more accessible and understandable.

Related Articles

Back to top button

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services



Join industry leaders and receive the latest insights on what really matters in AM!

This information will never be shared with 3rd parties

I’ve read and accept the privacy policy.*